Legislative Aggregate Resources Task Force # Aggregate Primer Kirsten Pauly, PE/PG Sunde Engineering, PLLC July 24, 2017 ## Introduction to Aggregates - Definitions - Aggregates Use - Specifications - Mine Development - Environmental Review and Permitting - Mining and Processing ## Definition - Natural Aggregates Natural aggregates are materials composed of many rock fragments. They can be used in their natural state or after primary processing operations such as crushing, washing, and sizing. ## Sources of Aggregates in MN - Crushed Stone - Sand and Gravel ## **Crushed Stone Sources** Limestone/Dolomite – Calcium Carbonate ## **Crushed Stone Sources** #### Granite ## **Crushed Stone Sources** #### Quartzite ### Sand and Gravel Sand and gravel is a mixture of various sizes of rocks and rock fragments. The distinction between sand and gravel is based on size. ### Sand Sedimentary material consisting of small, often rounded grains or particles of disintegrated rock. Sand often consists of quartz, but it can contain other minerals or rock fragments as well. By Siim Sepp - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1 7276362 ## Gravel - Larger size fraction than sand - Higher value - Many different mineral assemblages and rock types - Different rock types impact the quality of the aggregate ## Use of Construction Aggregates ### Aggregates are a VITAL component of our state's infrastructure **Concrete and Asphalt Mixes** Foundations for Highways **Foundations for Structures** Railroad Ballast **Road Shoulder Stabilization** **Gravel Roads** Driveways RipRap/Erosion Control **Shoreland Stabilization** Agricultural Lime **Snow and Ice Control** Drainfields **Golf Course Sand** Infield Mix **Recreational Trails** Landscape Rock **Engineered Backfill** **Retaining Wall Blocks** Beaches Estimated <u>annual consumption</u> of aggregates is 9-10 tons per person to build and maintain roads, bridges, develop infrastructure, and support construction projects. 2017 Minerals Education Coalition Society for mining, Metallurgy & Exploration Foundation ## Use of Construction Aggregates | REPORTED USE (2013) | CRUSHED STONE | SAND AND GRAVEL | | |-----------------------------|---------------|-----------------|--| | Road Base | 41 | 42 | | | Asphalt/Bituminous Mixtures | 19 | 22 | | | Concrete Aggregates | 19 | 21 | | | Fill Material | 0 | 14 | | | Ag Lime | 9 | 0 | | | Riprap | 3 | 0 | | | Other | 9 | 2 | | ## **Road Construction** The majority of aggregates produced in Minnesota are used in road construction ### **Road Construction** It is estimated that 85,000 tons of aggregates are necessary to construct one mile of a four-lane interstate highway ## Asphalt and Bituminous Mixes Asphalt: Over 90% Aggregates ## Asphalt and Bituminous Mixes Asphalt: Over 90% Aggregates ## Concrete/Ready-Mix Concrete: 60-75% Aggregates ## Concrete/Ready-Mix Concrete: 60-75% Aggregates The construction of a new home uses an average of 120 tons of aggregates. Sidewalks, driveways, roofs, foundations, floors, fences, and walls all contain aggregates in one form or another. ## Specifications ### Not all rocks make good aggregate! Gradation Grain-size distribution Particle Shape: Surface characteristics "Contaminants": shale, silt, clay, mica, and organic materials Physical soundness Hardness and strength Chemical properties: Inert – not chemically reactive Volume changes Specific gravity ## **Standard Specifications** #### **DIVISION III** #### **MATERIALS** #### **Cementing Materials** | 3101 | Portland Cement | |------|---| | 3102 | Slag Cement | | 3103 | Blended Hydraulic Cement | | 3105 | Bagged Portland Cement Concrete Patching Mix Grade 3u18 And 3u18m | | 3106 | Hydrated Lime | | 3107 | Masonry Mortar | | 3113 | Admixtures for Concrete | | 3115 | Fly Ash for Use in Portland Cement Concrete | | | | | | Aggregates | | 3126 | Fine Aggregate for Portland Cement Concrete | |------|---| | 3127 | Fine Aggregate For Bituminous Seal Coat | | 3128 | Aggregate for use in Masonry Mortar | | 3135 | Modified Aggregate Bases | | 3136 | Drainable Bases | | 3137 | Coarse Aggregate For Portland Cement Concrete | | 3138 | Aggregate For Surface And Base Courses | | 3139 | Graded Aggregate For Bituminous Mixtures | | 3145 | Mineral Filler | | 3146 | Binder Soil | | 3149 | Granular Material | | 3147 | Gardar Waterian | ### MnDOT - Standard Construction **Specifications** | | Table 3137-1
Coarse Aggregate for General Use | | | |--------------|--|---------------------------------|--| | Quality Test | | Maximum
Percent by
Weight | | | (a) | Shale: | | | | | Fraction retained on the ½ in [12.5 mm] sieve | 0.4 | | | | Fraction retained on the No. 4 [4.75 mm] sieve, as a percentage of the total material | 0.7 | | | (b) | Soft iron oxide particles (paint rock and ochre) | 0.3 | | | (c) | Total spall materials*: | | | | | Fraction retained on the ½ in [12.5 mm] sieve | 1.0 | | | | Fraction retained on the No. 4 [4.75 mm] sieve, as a percentage of the total material | 1.5 | | | (d) | Soft particles | 2.5 | | | (e) | Clay balls and lumps | 0.3 | | | (f) | Sum of (c) total spall materials, (d) soft particles, and (e) clay
balls and lumps† | 3.5 | | | (g) | Slate | 3.0 | | | (h) | Flat or elongated pieces‡ | 15.0 | | | (i) | | | | | | Class A and Class B aggregates# | 1.5 | | | | Class C and Class D aggregates§ | 1.0 | | | 0) | Los Angeles Rattler, loss on total sample | 40.0 | | | (k) | Soundness of magnesium sulfate** | 15.0 | | - Includes the percentages retained by shale and soft iron oxide particles, plus other iron oxide particles, unsound cherts, pyrite, and other materials with similar characteristics. - Exclusive of shale, soft iron oxide particles, and total spall materials. - For total spall materials, use the percent in the total sample retained on the No. 4 [4.75 mm] - Thickness less than 25 percent of the maximum width. Length greater than 3 times the - # Each individual fraction at the point of placement consists of dust from the fracture and free of clay or shale. - § For each individual fraction at the point of placement. - ** Loss at 5 cycles for any fraction of the coarse aggregate. Do not blend materials from multiple sources to obtain a fraction meeting the sulfate soundness requirement. #### 1. Identify Potential Sources of Aggregate Need to understand the geology of the State Sand and gravel deposited from glaciers and water MN – Glacial History ICE AGE - Pleistocene Epoch 2 million years ago to 10,000 years ago Wisconsin Age 75,000 years ago majority of glacial sediments in Mn Glacial Deposits Outwash/Till Quaternary map based on data from the University of Minnesota - Minnesota Geological Survey, Geologic Map of Minnesota, Quaternary geology, H.C. Hobbs and J.E. Goebel, 1962. Simplified description by C.R. Howe, 2000, Mn/DOT Understand the bedrock geology of the state to identify crushed stone sources Identify suitable types of bedrock Understand the bedrock geology of the state to identify crushed stone sources Identify suitable types of bedrock Identify areas without excessive overburden Location considerations Near to end use of the aggregate **Developing Areas** Perceived land use conflicts can create challenges for mine permitting ### Permits: LOCAL GOVERNMENT Land Use Permit: CUP/IUP #### MPCA: - Air Emissions Permit - NPDES Stormwater Permits #### **DNR**: - Work in Public Waters - Water Appropriations - Threatened or Endangered Species Takings permit #### **BWSR** Wetlands MINE PERMITTING Clear and Grub Strip Overburden BLASTING: (Crushed Stone Sources) and removal BLASTING: (Crushed Stone Sources) and removal BLASTING: (Crushed Stone Sources) and removal Sand and Gravel Extraction above and below the water table Crushing: Larger sized pieces of rock, either blasted bedrock or boulders and cobbles in sand and gravel deposits are crushed to break them into smaller sizes. Washing: Removes fine particles, like silt from the larger pieces of rock. Conveyors and material transfers ## Multiple Aggregate Products - 3" with fines - 1½ inch with fines - ¾ inch screened - 3/8 inch with fines - 3/8 inch washed - Class 5 gravel - Landscape Boulders ## Ready-Mix Plant # Hot-Mix Asphalt Plant #### Summary - 1. Aggregates are an important natural resource in Minnesota - 2. Both the public sector and the private sector use aggregates to maintain and build our states infrastructure including roads, bridges, public works projects, schools, and homes - 3. Aggregates must meet certain quality standards - 4. The location of an aggregate mine depends upon the local geology, we can't choose. - 5. Local supplies of quality aggregates are economically beneficial, reducing tax payer dollars spent on construction projects - 6. Aggregate mining and processing is regulated on the local, state, and federal level