Legislative Aggregate Resources Task Force

Aggregate Primer

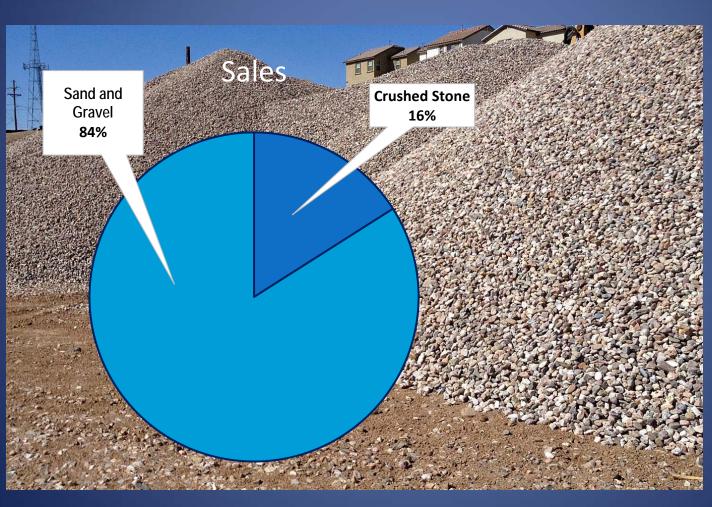
Kirsten Pauly, PE/PG Sunde Engineering, PLLC

July 24, 2017

Introduction to Aggregates

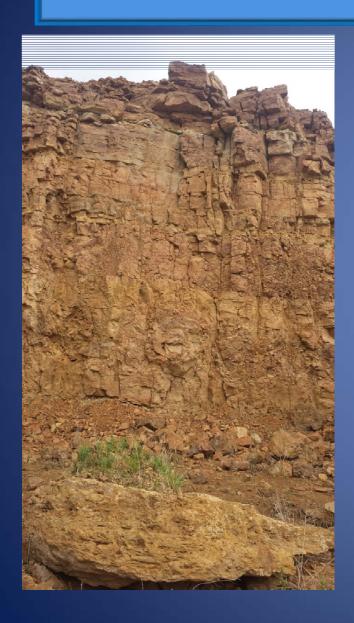
- Definitions
- Aggregates Use
- Specifications
- Mine Development
- Environmental Review and Permitting
- Mining and Processing

Definition - Natural Aggregates



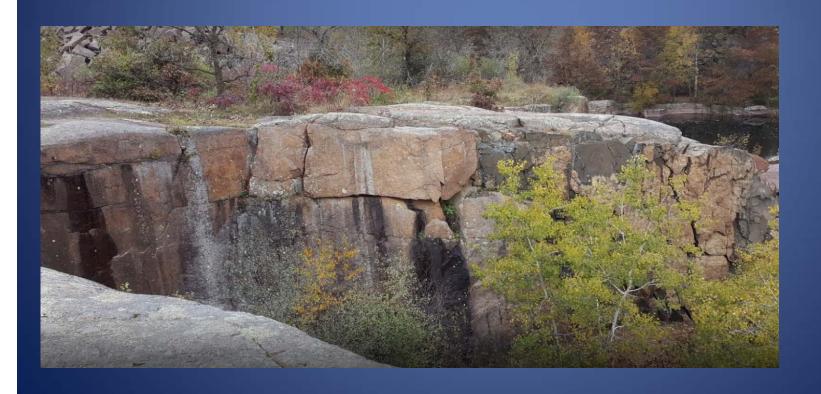
Natural aggregates are materials composed of many rock fragments.

They can be used in their natural state or after primary processing operations such as crushing, washing, and sizing.


Sources of Aggregates in MN

- Crushed Stone
- Sand and Gravel

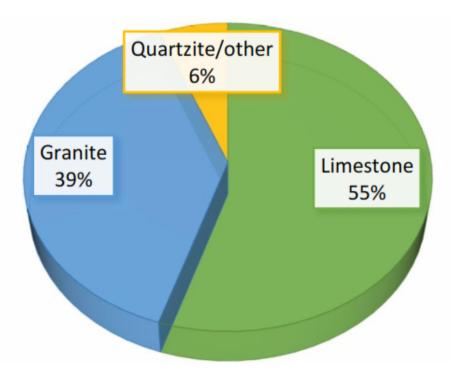
Crushed Stone Sources



Limestone/Dolomite – Calcium Carbonate

Crushed Stone Sources

Granite


Crushed Stone Sources

Quartzite

Sand and Gravel

 Sand and gravel is a mixture of various sizes of rocks and rock fragments. The distinction between sand and gravel is based on size.

Sand

Sedimentary material consisting of small, often rounded grains or particles of disintegrated rock.

Sand often consists of quartz, but it can contain other minerals or rock fragments as well.

By Siim Sepp - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1 7276362

Gravel

- Larger size fraction than sand
- Higher value
- Many different mineral assemblages and rock types
- Different rock types impact the quality of the aggregate

Use of Construction Aggregates

Aggregates are a VITAL component of our state's infrastructure

Concrete and Asphalt Mixes

Foundations for Highways

Foundations for Structures

Railroad Ballast

Road Shoulder Stabilization

Gravel Roads

Driveways

RipRap/Erosion Control

Shoreland Stabilization

Agricultural Lime

Snow and Ice Control

Drainfields

Golf Course Sand

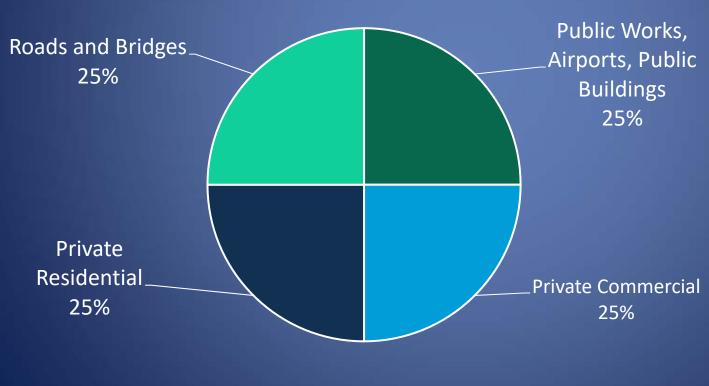
Infield Mix

Recreational Trails

Landscape Rock

Engineered Backfill

Retaining Wall Blocks


Beaches

Estimated <u>annual consumption</u> of aggregates is 9-10 tons per person to build and maintain roads, bridges, develop infrastructure, and support construction projects.

2017 Minerals Education Coalition Society for mining, Metallurgy & Exploration Foundation

Use of Construction Aggregates

REPORTED USE (2013)	CRUSHED STONE	SAND AND GRAVEL	
Road Base	41	42	
Asphalt/Bituminous Mixtures	19	22	
Concrete Aggregates	19	21	
Fill Material	0	14	
Ag Lime	9	0	
Riprap	3	0	
Other	9	2	

Road Construction

The majority of aggregates produced in Minnesota are used in road construction

Road Construction

It is estimated that 85,000 tons of aggregates are necessary to construct one mile of a four-lane interstate highway

Asphalt and Bituminous Mixes

Asphalt: Over 90% Aggregates

Asphalt and Bituminous Mixes

Asphalt: Over 90% Aggregates

Concrete/Ready-Mix

Concrete: 60-75% Aggregates

Concrete/Ready-Mix

Concrete: 60-75% Aggregates

The construction of a new home uses an average of 120 tons of aggregates. Sidewalks, driveways, roofs, foundations, floors, fences, and walls all contain aggregates in one form or another.

Specifications

Not all rocks make good aggregate!

Gradation Grain-size distribution

Particle Shape: Surface characteristics

"Contaminants": shale, silt, clay, mica, and organic materials

Physical soundness

Hardness and strength

Chemical properties: Inert – not chemically reactive

Volume changes

Specific gravity

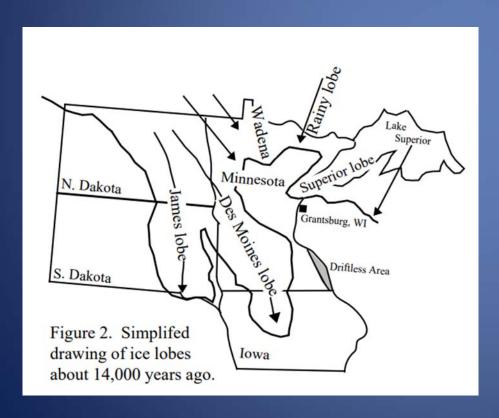
Standard Specifications

DIVISION III

MATERIALS

Cementing Materials

3101	Portland Cement
3102	Slag Cement
3103	Blended Hydraulic Cement
3105	Bagged Portland Cement Concrete Patching Mix Grade 3u18 And 3u18m
3106	Hydrated Lime
3107	Masonry Mortar
3113	Admixtures for Concrete
3115	Fly Ash for Use in Portland Cement Concrete
	Aggregates


3126	Fine Aggregate for Portland Cement Concrete
3127	Fine Aggregate For Bituminous Seal Coat
3128	Aggregate for use in Masonry Mortar
3135	Modified Aggregate Bases
3136	Drainable Bases
3137	Coarse Aggregate For Portland Cement Concrete
3138	Aggregate For Surface And Base Courses
3139	Graded Aggregate For Bituminous Mixtures
3145	Mineral Filler
3146	Binder Soil
3149	Granular Material
3147	Gardar Waterian

MnDOT - Standard Construction **Specifications**

	Table 3137-1 Coarse Aggregate for General Use		
Quality Test		Maximum Percent by Weight	
(a)	Shale:		
	Fraction retained on the ½ in [12.5 mm] sieve	0.4	
	Fraction retained on the No. 4 [4.75 mm] sieve, as a percentage of the total material	0.7	
(b)	Soft iron oxide particles (paint rock and ochre)	0.3	
(c)	Total spall materials*:		
	Fraction retained on the ½ in [12.5 mm] sieve	1.0	
	Fraction retained on the No. 4 [4.75 mm] sieve, as a percentage of the total material	1.5	
(d)	Soft particles	2.5	
(e)	Clay balls and lumps	0.3	
(f)	Sum of (c) total spall materials, (d) soft particles, and (e) clay balls and lumps†	3.5	
(g)	Slate	3.0	
(h)	Flat or elongated pieces‡	15.0	
(i)			
	Class A and Class B aggregates#	1.5	
	Class C and Class D aggregates§	1.0	
0)	Los Angeles Rattler, loss on total sample	40.0	
(k)	Soundness of magnesium sulfate**	15.0	

- Includes the percentages retained by shale and soft iron oxide particles, plus other iron oxide particles, unsound cherts, pyrite, and other materials with similar characteristics.
- Exclusive of shale, soft iron oxide particles, and total spall materials.
- For total spall materials, use the percent in the total sample retained on the No. 4 [4.75 mm]
- Thickness less than 25 percent of the maximum width. Length greater than 3 times the
- # Each individual fraction at the point of placement consists of dust from the fracture and free of clay or shale.
- § For each individual fraction at the point of placement.
- ** Loss at 5 cycles for any fraction of the coarse aggregate. Do not blend materials from multiple sources to obtain a fraction meeting the sulfate soundness requirement.

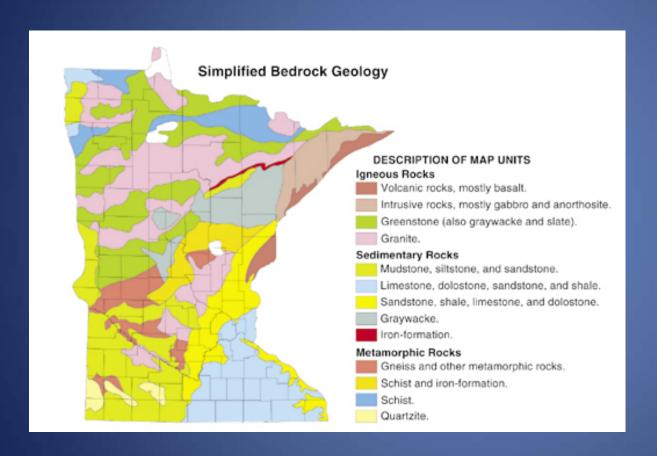
1. Identify Potential Sources of Aggregate

Need to understand the geology of the State

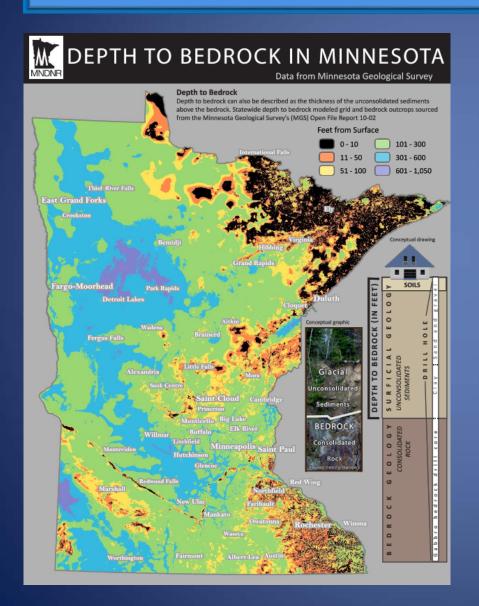
Sand and gravel deposited from glaciers and water

MN – Glacial History

ICE AGE - Pleistocene Epoch 2 million years ago to 10,000 years ago


Wisconsin Age 75,000 years ago majority of glacial sediments in Mn

Glacial Deposits
Outwash/Till


Quaternary map based on data from the University of Minnesota - Minnesota Geological Survey, Geologic Map of Minnesota, Quaternary geology, H.C. Hobbs and J.E. Goebel, 1962. Simplified description by C.R. Howe, 2000, Mn/DOT

Understand the bedrock geology of the state to identify crushed stone sources

Identify suitable types of bedrock

Understand the bedrock geology of the state to identify crushed stone sources

Identify suitable types of bedrock

Identify areas without excessive overburden

Location considerations

Near to end use of the aggregate

Developing Areas

Perceived land use conflicts can create challenges for mine permitting

Permits:

LOCAL GOVERNMENT
Land Use Permit: CUP/IUP

MPCA:

- Air Emissions Permit
- NPDES Stormwater Permits

DNR:

- Work in Public Waters
- Water Appropriations
- Threatened or Endangered
 Species Takings permit

BWSR

Wetlands

MINE PERMITTING

Clear and Grub
Strip Overburden

BLASTING: (Crushed Stone Sources)

and removal

BLASTING: (Crushed Stone Sources) and removal

BLASTING: (Crushed Stone Sources)

and removal

Sand and Gravel

Extraction above and below the water table

Crushing: Larger sized pieces of rock, either blasted bedrock or boulders and cobbles in sand and gravel deposits are crushed to break them into smaller sizes.

Washing: Removes fine particles, like silt from the larger pieces of rock.

Conveyors and material transfers

Multiple Aggregate Products

- 3" with fines
- 1½ inch with fines
- ¾ inch screened
- 3/8 inch with fines
- 3/8 inch washed
- Class 5 gravel
- Landscape
 Boulders

Ready-Mix Plant

Hot-Mix Asphalt Plant

Summary

- 1. Aggregates are an important natural resource in Minnesota
- 2. Both the public sector and the private sector use aggregates to maintain and build our states infrastructure including roads, bridges, public works projects, schools, and homes
- 3. Aggregates must meet certain quality standards
- 4. The location of an aggregate mine depends upon the local geology, we can't choose.
- 5. Local supplies of quality aggregates are economically beneficial, reducing tax payer dollars spent on construction projects
- 6. Aggregate mining and processing is regulated on the local, state, and federal level